

ENVIRONMENTAL PROTECTION DIVISION

Accounting for Secondary PM_{2.5} Formation in Georgia

James Boylan
Manager, Planning and Support Program
Georgia EPD - Air Protection Branch

2016 EPA Regional/State/Local Modelers Workshop New Orleans, LA November 16, 2016

Co-authors: Byeong-Uk Kim, Yan Huang, and Yunhee Kim

INTRODUCTION

- Facilities applying for PSD air permits are required to model the impact of direct PM_{2.5} emissions (> 10 TPY) using AERMOD.
 - In addition, these facilities must account for the impact of secondary $PM_{2.5}$ formation from precursor emissions (NOx and/or $SO_2 \ge 40$ TPY).
- AERMOD does not contain chemistry or aerosol formation modules
 - The secondary formation of PM_{2.5} cannot be modeled directly in AERMOD.

"EQUIVALENT" DIRECT PM_{2.5} EMISSIONS

- $PM_{2.5}$ offset trading ratios can be used to account for secondary formation of $PM_{2.5}$ in AERMOD.
- Convert SO₂ and NOx emissions into "equivalent" direct PM_{2.5} emissions.
 - **100**:1 \rightarrow 100 TPY SO₂ = 1 TPY direct PM_{2.5}
 - 10:1 \rightarrow 100 TPY SO₂ = 10 TPY direct PM_{2.5}
 - 1:1 \rightarrow 100 TPY SO₂ = 100 TPY direct PM_{2.5}
 - 0.5:1 \rightarrow 100 TPY SO₂ = 200 TPY direct PM_{2.5}
 - This is ~100% conversion of SO₂ to (NH₄)₂SO₄
- <u>Lower PM_{2.5}</u> offset ratios will produce <u>more</u> secondary PM_{2.5}.

SECONDARY FORMATION IN AERMOD

- Option 1: Add SO_2 and NOx "equivalent" direct $PM_{2.5}$ emissions to the actual direct $PM_{2.5}$ emissions and run AERMOD
 - Allows for ratios that vary temporally
- Option 2: Calculate a percent increase in direct PM_{2.5} emissions due to the addition of SO₂ and NOx "equivalent" direct PM_{2.5} emissions and scale the AERMOD output for actual direct PM_{2.5} emissions
 - Allows for ratios that vary spatially

MODEL SETUP

- Plant Washington PSD Permit Application
 - 850 MW Coal Fired Power Plant located in Washington County, GA (permit issued on April 8, 2010)
- 2002 MM5 Meteorology
- 2009 Emissions Used in Georgia's PM_{2.5} SIPs
 - Added Plant Washington emissions
 - 4,200 TPY SO2, 1,817 TPY NOx, 6 TPY EC
 - Stack height = 137.16 meters
- CAMx with Flexi-nesting
 - 12-km/4-km/1.333-km
- Three sensitivity runs to calculate offset ratios
 - Zero-out stack emissions: (1) SO₂, (2) NOx, (3) EC

MODELED PM_{2.5} OFFSET RATIOS

- Normalized Sensitivity (S)
 - $S_{SO2} = (\Delta PM2.5_{SO2}/\Delta TPY_{SO2})$
 - $S_{NOx} = (\Delta PM2.5_{NOx}/\Delta TPY_{NOx})$
 - $S_{PM2.5} = (\Delta PM2.5_{PM2.5}/\Delta TPY_{PM2.5})$

- PM_{2.5} Offset Ratios (R)
 - $R_{S02} = S_{PM2.5}/S_{S02}$
 - $R_{NOx} = S_{PM2.5}/S_{NOx}$

SENSITIVITY RUNS

- Sensitivity runs were performed to evaluate how PM_{2.5} offset ratios varied by:
 - Distance from the source
 - Season of the year
 - Location in the state
 - Stack height
 - Grid resolution

EIGHT MODELING DOMAINS

BINNED OFFSET RATIOS

- For each precursor (x2), season (x4), and location (x8):
 - Averaged S_{SO2} , S_{NOx} , and $S_{PM2.5}$ for all grid cells at a given distance
 - Calculated the average trading ratios (R_{SO2} and R_{NOx}) for each distance
- Placed trading ratios into three distance bins
 - <1 km, 1-4 km, >4 km

SO₂ OFFSET RATIOS - SUMMER

SO₂ OFFSET RATIOS - SUMMER

SO₂ OFFSET RATIOS – ALL SEASONS

NOx OFFSET RATIOS - ALL SEASONS

TIERED APPROACH

- Used a tiered approach starting with the most conservative offset ratios and easiest to apply:
 - Tier 1
 - SO₂ and NOx offset ratios from summer at distance > 4 km
 - Tier 2
 - SO₂ and NOx offset ratios from summer that vary with distance (3 bins)
 - Tier 3
 - Application of SO₂ and NOx offset ratios that are location specific and vary by quarter and by distance

Distance	SO ₂	NOx
< 1 km	20:1	50:1
1 - 4 km	10:1	30:1
> 4 km	5:1	20:1

EXAMPLE #1

- Direct $PM_{2.5}$ emissions = 118.30 TYP
- SO_2 emissions = 190.93 TPY
- NOx emissions = 340.65 TPY
- PM_{2.5} Scaling Factor =
 (S02 TPY/S02 Ratio) + (N0x TPY/N0x Ratio) + PM2.5 TPY
 PM2.5 TPY

Distance	SO ₂ Ratio	NOx Ratio	Scaling Factor
< 1 km	20	50	[1.138]
1 - 4 km	10	30	1.257 (Tier 2)
> 4 km	5	20	1.467 → (Tier 1)

ANNUAL PM_{2.5} – NO SECONDARY

Annual w/o secondary [ug/m3]

- > 0.30
- 0.20 0.30
- 0.10 0.20
- 0.05 0.10
- < 0.05

ANNUAL PM_{2.5} – TIER 1

Annual Tier 1 [ug/m3]

- > 0.30
- 0.20 0.30
- 0.10 0.20
- 0.05 0.10
- < 0.05

ANNUAL PM_{2.5} vs. SIL

DAILY PM_{2.5} - NO SECONDARY

Daily w/o secondary [ug/m3]

- > 1.2
- 0 1.1 1.2
- 0 1.0 1.1
- 0.9 1.0
- < 0.9

DAILY PM_{2.5} - TIER 1

Daily Tier 1 [ug/m3]

- > 1.2
- 1.1 1.2
- 0 1.0 1.1
- 0.9 1.0
- < 0.9

DAILY PM_{2.5} - TIER 2

Daily Tier 2 [ug/m3]

- > 1.2
- 1.1 1.2
- 0 1.0 1.1
- 0.9 1.0
- < 0.9

DAILY PM_{2.5} vs. SIL

EXAMPLE #2

- Direct PM_{2.5} emissions = 46.9 TYP
- SO_2 emissions = 0.49 TPY
- NOx emissions = 72.1 TPY
- PM_{2.5} Scaling Factor =
 (S02 TPY/S02 Ratio) + (NOx TPY/NOx Ratio) + PM2.5 TPY
 PM2.5 TPY

Distance	SO ₂ Ratio	NOx Ratio	Scaling Factor
< 1 km	20	50	[1.031]
1 - 4 km	1	30	1.051 (Tier 2)
> 4 km	5	20	1.076 (Tier 1)

EXAMPLE #3

- Direct PM_{2.5} emissions = 46.9 TYP
- SO_2 emissions = 72.1 TPY
- NOx emissions = 72.1 TPY
- PM_{2.5} Scaling Factor =
 (S02 TPY/S02 Ratio) + (NOx TPY/NOx Ratio) + PM2.5 TPY
 PM2.5 TPY

Distance	SO ₂ Ratio	NOx Ratio	Scaling Factor
< 1 km	20	50	[1.108]
1 - 4 km	10	30	1.205 (Tier 2)
> 4 km	5	20	1.384 -> (Tier 1)

ANNUAL PM_{2.5} – NO SECONDARY IMPACTS

ANNUAL PM_{2.5} – TIER 1 (EXAMPLE #2)

ANNUAL PM_{2.5} – TIER 2 (EXAMPLE #2)

ANNUAL PM_{2.5} – TIER 1 (EXAMPLE #3)

ANNUAL PM_{2.5} – TIER 2 (EXAMPLE #3)

EXAMPLE #2 - ANNUAL PM_{2.5} VS. SIL

EXAMPLE #2 - ANNUAL SECONDARY PM_{2.5}

EXAMPLE #3 - ANNUAL PM_{2.5} VS. SIL

EXAMPLE #3 - ANNUAL SECONDARY PM_{2.5}

DAILY PM_{2.5} - NO SECONDARY IMPACTS

DAILY PM_{2.5} – TIER 1 (EXAMPLE #2)

DAILY PM_{2.5} – TIER 2 (EXAMPLE #2)

DAILY PM_{2.5} – TIER 1 (EXAMPLE #3)

DAILY PM_{2.5} – TIER 2 (EXAMPLE #3)

EXAMPLE #2 - DAILY PM_{2.5} VS. SIL

EXAMPLE #2 - DAILY SECONDARY PM_{2.5}

EXAMPLE #3 – DAILY PM_{2.5} VS. SIL

EXAMPLE #3 - DAILY SECONDARY PM_{2.5}

EXAMPLE #4

- Direct PM_{2.5} emissions = 2.6 TYP
- SO_2 emissions = 0.2 TPY
- NOx emissions = 45.8 TPY
- PM_{2.5} Scaling Factor =
 (S02 TPY/S02 Ratio) + (NOx TPY/NOx Ratio) + PM2.5 TPY
 PM2.5 TPY

Dist	ance	SO ₂ Ratio	NOx Ratio	Sca	aling Fac	tor
< 1	L km	20	50		1.352	
1 -	4 km	1	30	-	1.587	(Tier 2)
> 4	l km	5	20		1.881-	→ (Tier 1)

ANNUAL PM_{2.5} – NO SECONDARY IMPACTS

ANNUAL PM_{2.5} - TIER 1

DAILY PM_{2.5} - NO SECONDARY IMPACTS

DAILY PM_{2.5} - TIER 1

TIER 3 OFFSET RATIOS

SO₂

Distance	Winter	Spring	Summer	Fall
< 1 km	250:1	70:1	20:1	40:1
1 - 4 km	130:1	35:1	10:1	25:1
> 4 km	40:1	10:1	5:1	10:1

NOx

Distance	Winter	Spring	Summer	Fall
< 1 km	175:1	80:1	50:1	70:1
1 - 4 km	100:1	45:1	30:1	45:1
> 4 km	40:1	20:1	20:1	20:1

TIER 3 MODELING

- Need to perform three model runs with three different sets of receptors
 - < 1 km, 1-4 km, and > 4 km
- Calculate seasonal PM_{2.5} scaling factor appropriate for each distance bin
- Vary modeled $PM_{2.5}$ emissions by applying seasonal $PM_{2.5}$ scaling factors
- Combine the three model runs into a single file to calculate the design value concentration

EXAMPLE MERPS APPROACH

- Evaluated the maximum impact on ozone and PM_{2.5} from each precursor
 - The maximum impacts will vary with stack height

$$MERP = (Precursor\ Emissions) * \frac{SIL\ Conc.}{Max.\ Model\ Conc.}$$

- EPA's recommended SILs for NAAQS
 - Ozone SIL = 1.0 ppb
 - Annual $PM_{2.5}$ SIL = 0.2 μ g/m³
 - Daily $PM_{2.5}$ SIL = 1.2 μ g/m³
- PM_{2.5} SIL assumptions
 - Assume half PM_{2.5} is primary and half secondary
 - Assume half secondary is due to SO₂ and other half due to NOx
 - Annual SO₂ SIL = Annual NOx SIL = 0.05 μg/m³
 - Daily SO₂ SIL = Daily NOx SIL = 0.3 μg/m³

EXAMPLE MERPS CALCULATION

Pollutant	Precursor	Modeled Emissions (TPY)	Maximum Impact (ppb)	SIL (ppb)	Example MERP (TPY)
Ozone	NOx	1,817.73	0.564	1.0	3,223
Pollutant	Precursor	Modeled Emissions (TPY)	Maximum Impact (μg/m³)	SIL (µg/m³)	Example MERP (TPY)
Annual PM _{2.5}	SO ₂	4,200.35	0.0471	0.05	4,459
Annual PM _{2.5}	NOx	1,817.73	0.0104	0.05	8,739

These example MERPs are likely too high due to the use of a tall stack in the modeling. Various stack heights need to be tested before selecting the MERPs.

NEXT STEPS

- Document offset ratio approach and provide example calculations to permit applicants.
- Perform new offset ratio modeling with EPA's 2011/2017 platform and update analysis.
- Perform additional modeling to develop MERPs for SO₂ and NOx.

CONTACT INFORMATION

DEPT. OF NATURAL RESOURCES

James Boylan, Ph.D.
Georgia Dept. of Natural Resources
4244 International Parkway, Suite 120
Atlanta, GA 30354

James.Boylan@dnr.ga.gov 404-363-7014